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Generalized Interference Model*t
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A crossing-symmetric Regge-pole model of the generalized interference type is discussed. The model
consists of a sum of infinitely many Regge poles in each channel, corresponding to a leading Regge tra-
jectory and its parallel daughters. All the usual requirements are satisfied by the Regge residues, and non-
linear trajections can be introduced without difficulty. At the expense of a loss of physical interpretation,
the double-counting problem can be eliminated by identifying the Schmid loops with the direct-cha»el
resonances.

l. INTRODUCTION another type of crossing-symmetric, analytic Regge-
pole model in which duality is not an essential ingredi-

ent. The model is basically a generalized interference
model' in which the s, t, and u poles occur additively, in

separate terms. The terms containing the s poles do not,
for example, contribute to the s-channel asymptotic
behavior. The model is generally "nondualistic" and it
will generally entail "double counting. "3,

The double-counting aspect of the model is eliminated

or, at least, minimized for certain values of the param-
eters involved in the model (e.g. , trajectory intercepts).
This is achieved by identifying the "Schmid loops"
with the direct-channel resonances, leading to a boot-
strap condition for the Regge trajectories. The tra-
jectory intercepts obtained in this way agree well with

those obtained from finite-energy sum-rule saturation' '
or from experiment.

In Sec. 2 the model is written down for the scattering
of equal-mass spinless particles with internal sym-
metries neglected (the generalization to arbitrary spins,
masses, and symmetries is straightforward), and the
analyticity and asymptotic properties of the full ampli-

tude are outlined.
In Sec. 3 the t-plane properties of the amplitude are

studied. It is found that there is an infinite family of

Regge poles, consisting of a leading trajectory and its
parallel daughters. The analyticity properties of the

Regge residues are found to be precisely those required

by general Regge-pole theory. "
Section 4 contains a short discussion of the problem of

duality and double counting in the model. It is argued
that double counting can be eliminated by requiring
that the total "observed" resonating partial-wave loop
be made up partly by an actual resonance pole and

partly by the Schmid loop, as in the model of
Alessandrini, Amati, and Squires. " Some of the diS.-
culties with the physical interpretation of this procedure
are also discussed.
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ECENTLY there has been a great deal of interest
in constructing crossing-symmetric, Regge-be-

haved models of scattering amplitudes. The desire to
construct such models is easily understood, since they
would combine two very fundamental theoretical ideas
(crossing symmetry and Regge poles) in a single pack-
age. If, in addition, the models satisfy the analyticity
properties required by 5-matrix theory then, pre-
sumably, only unitarity would be missing. In this con-
nection, the use of Regge-behaved amplitudes has the
well-known advantage that unitarity is not manifestly
contradicted at high energies.

The construction of crossing-symmetric Regge-pole
models is of importance even from a purely phenomeno-
logical point of view. For example, in pp scattering, tI-
crossing is equivalent to the Pauli principle for the two
protons. ' For large momentum transfers, especially for
those corresponding to scattering near 90', the Pauli
principle has major effects which should not be ne-
glected. Similarly, in xE scattering, the effects of the t

channel (vr7r ~ NN) and the I channel (AN ~ 7rN) are
expected to be of comparable importance for large-angle
scattering. In the mE problem, the Bose symmetry of
the t-channel 2x state has the consequence that when-
ever I-channel poles are present, the s-channel poles
must also be included. Thus, a meaningful phenomeno-
logical Regge model of large-angle ~X scattering should
embody the crossing properties at the outset.

A very interesting crossing-symmetric Regge pole
model has been proposed recently by Veneziano. ' The
Veneziano model incorporates analyticity, crossing sym-
metry, and Regge behavior in a way that is intimately
connected with the recently discovered concept of
duality. ' 4 (See, however, Ref. 5.) In this paper we study
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2. GENERALIZED INTERFERENCE MODEL

In this section the model is written down for the
simple case of equal-mass, spinless-particle scattering.
The kinematics is indicated in Fig. 1. In the sequel s, t,
and u are the usual Mandelstam variables, defined as
s = (pi+ p2)', t = (pi —pa)', and I= (pi —p4)'. The metric
is chosen so that pP=m'.

The scatterin~ amplitude is

A (s, t,u) =A &'& (s,t,u)+A i'& (s,t,u)+A'~& (s,t,u), (2.1a)

where

A" (s,t,~) =f(s) [(4nP —t) ~i'& + (4m' —u) ~&'&j, (2.1b)

A&'&(s, t,l) =f (t) [(4m' —s) &'&+(4nP —I) &'&] (2.1c)

A&"&(s,t,N)=f(N)[(4m' —s) i"&+(4m' —t) i"&]. (2.1d)

Obviously, A (s,t,l) is symmetric in s, t, and N. If the
functions f and n are real-analytic with right-hand cuts
from 4~n2 to ~, then A has the cut structure required by
5-matrix theory. ' Later it will be seen that the Regge
poles are 0;, n —j, n —2, , as might be expected from
the form of Eqs. (2.1). In (2.1a), only leading-order
terms have been written explicitly. Lower-order terms
can be added on in the obvious way.

It is clear that the amplitude A has no poles in s, t,
and e unless f has poles. A pole at s=si will have a
residue which is a polynomial in t if and only if n(s&) =t,
a non-negative integer. %hen this is true, the pole
occurs in finitely many partial waves a&(s), ai. i(s),
Thus, if A is supposed to describe an amplitude with
resonances lying on a Regge trajectory n(s), then f(s)
must contain a pole factor such as I'(1—n(s) ). Because
of the structure of Eqs. (2.1), the residues of such poles
are automatically polynomials in t, even if the trajectory
a(s) is nonlinear. This is a feature of the model which
could make it well suited to phenomenological applica-
tions. The model of Veneziano does not have this
property, and it seems to be the case4 that it must first
be "unitarized" before it can treat resonances of 6nite
width.

A necessary property of any scattering amplitude
A (s,t) is that of polynomial boundedness, for some range
of fixed t, as

I
s

I

—+~. This is needed to guarantee the
existence of dispersion relations. For the amplitude A

of Eq. (2.1a), this property depends critically on the
behavior of the function f(s) for large I

s I, which is now

considered in more detail.
First, it will be assumed throughout that the tra-

jectory function n(s) is "essentially linear" in the sense
that

Fro. 1. Kinematics for equal-
mass, spinless-par ticle
scattering.

«r approp»ate a and t&, with a)0. Then the large-Is I
behavior of Ai'& is (as IsI~~, with t fixed)

In order that the term A &') not destroy the polynomial
boundedness as IsI~~, the function f(s) clearly must
decrea, se faster than s ' in the right-hand wedge defined

by ——', m&args(-', x. It must also be chosen so that, for
a range of t, f(s) (4m' —t) ~' is polynomial bounded in. the
left-hand wedge ~x( args &2x.

An example of a function with the required properties
is easily constructed. First, let A and 8 be real, positive
constants. Then the function

h(s) =A+I'(Bs) (2.4)

s = —(~/B)[1+0(1/n!)j
Now let

S2

(2.5)

(2 6)

From (2.5), it follows that the infinite product (2.6)
exists and defines ho(s) as an entire function having

simple zeros at s=s~, s2, ~ ~ . From the infinite-product
representation of sinews, it follows that

is meromorphic in s and has the following asymptotic
behavior'.

h(s)-e ~'( B)s~' as s-+~

in the right-hand wedge, and

h(s) A as s ~~
in the left-hand wedges -', ir( args &~—e and 7r+c( args(~7r, where e)0 is arbitrarily small. The function h(s)
has simple zeros at values s~, s2, , with s„~—~ as
e —&. From the properties of the I' function near nega-
tive integer values of its argument, it follows that

n(s)
lim =1

&'i "as+&
(2.2)

sinirBs t' 1—s'/vr's„' )
ho(s) = —III

Bs ~=i i1—B's'/ir'B')
(2.7)

"That is, the cuts are correctly positioned. The branch points
will generally be of the wrong type, however. The right-hand cut is
not a cut of the square-root type. This is related to the incorrect
threshold properties discussed below.

Thus, from (2.5) and (2.7) it follows that

ho(s): const sinirBs/s.
I sf~~

(2.8)
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Therefore,

as s ~~.
The function

fhp(s)
f

~&const e ~')/fs
f

X(s) = hp(s)/h(s)

(2.9)

(2.10)

it follows that the high-energy behavior in the back-
ward direction results from the term A'") (as s~~,
with u fixed):

A(s, t) ~ A&")(s,t) f(u) (1+e ' "&"))s &"). (2.1&)

is an entire function with the following asymptotic
behavior:

I} (s)I-I(Bs) "I
as s~~ in the right-hand wedge, and

(2.11)

IX(s)
I

(const e~ )'/fs
I

(2.12)

as s ~ptt in the wedges -', ir(args(vr —p and tr+ p(args
(aper. From the identity I'(Bs)i'(1 Bs)=ir/—sin7rBs, it
follows that Eq. (2.12) applies also as s~~ in the
wedge ir —e (args (ir+ p.

Finally, let g (s) be a function (having at most a right-
hand cut) which carries the resonance poles and which
has a mild asymptotic behavior on the first sheet. For
example, let g be given by

g ( ) =r (1—(.) )/I'.„,(1—(.)),
which tends to 1 as

I
s f~~ on the first sheet. Then a

suitable function f(s) is

f(s) =g(s)hp(s)/h(s) . (2.13)

With f(s) given by (2.13), and with B)a, we have
A "(stt) —+0 exponentially in Is I

if t(4m' e)'. The-
term A'")(s, t) is easily seen to have this property also;
hence, as

I
s f~ttp, only the term Att)(s, t) survives. Thus

A (s t) A (t) (s t)~f(t) (1+e—i au(t))sa(t) (2 14)
I 8 I

—+oo

This is just ordinary Regge-asymptotic behavior, so the
existence of dispersion relations is assured, By choosing

f(s) to decrease suKciently fast as s increases, the

asymptotic behavior (2.14) can be made to apply at
quite low values of s—for example, after the first few
resonances.

The specific function f(s) of Eq. (2.13) is intended to
be only an exampte of a function of the required type.
The restriction to the range t 4m' —e"~1 could be
relaxed by constructing a different function f(s). Also,
the function (2.13) is unnecessarily complicated for
practical applications. For numerical purposes it would
be much simpler to use a function which behaves
properly along the real axis, but which might have
unwanted singularities out in the complex plane. For
example, the function

f(s) = (4m' s) "'/I 1+ (4m—'—s) "'$ (2.15}

has the asymptotic behavior

f(s) —& (—s) "' as s —&+~
1 as $~ —tx) ) (2.16)

but has extra, singularities arising from a vanishing
denominator for complex values of s.

By the same considerations which led to Eq. (2.14),

Another limit of physical interest is the high-energy,
fixed-angle limit. Here, s, t, and u all become large
together, and the ordinary Regge expansion might not
hold. The limit in this case must be extracted with more
care. In particular, it is convenient to establish condi-
tions under which A(') and A( ) dominate in this limit.
Using (2.2), we have

A') (s,t) : f(s) (-'s)
z fixed

)&L(1—z) &")+(1+a) ' ) (2.18)

At' )(s t) ~ f(—-'s(1 —a))
)({( s) t l~8«—~)+.Lt-s(a+ I)]~—l~'« —') } (2.19)

where s= cos8, is the cosine of the scattering angle in the
center-of-mass frame. For the special case 0,= 90' (a=0),
it follows that

A &') (s,t) f(s) Ps)*"X(phase factor) . (2.20)
A~t)(s, t) t)=pp* f(——',s)

3. /-PLANE PROPERTIES

In this section the l-plane properties of the amplitude
(2.1) are studied. In fact, consideration is restricted to

If the f of Eq. (2.15) is used, the dominance of A &') over
A" is guaranteed if k) —,'u. In this case, A( ' also
dominates A'), and the fixed angle, high-energy be-
havior becomes

A(s, t) ~ f(-', s(a—1)){(4m'—s)'+l-&t "
+Lks(1+a)j"' '""}+f( 2s(—a+1))
)({(4mp s) p ', tts(@+1)+—

L s(1 a)] p ,'tt8(z+t) } —(221)

The behavior indicated in Eq. (2.21) is generally
quite different from the fixed-s behavior in a model of
the Huang-Pinsky' type. In the latter model, the high-

energy amplitude is written as

A (s t)~f(t)(1+e '~~~")s~'"

+f(u)(1+e ' ~ ')s '"). (2.22)

Then t~2s(s 1) and u ——',—s(a+1) are substituted
directly into (2.22). The difference between (2.21) and
(2.22) resides in the effects of the infinitely many
daughter traj ectories.

It is clear that A (s,t) has incorrect threshold proper-
ties, since (4m' —s)"") becomes infinite a.s s ~ 4m' for
t). (t) 0. In the physical region, however, the threshold
behavior is finite if n(0)) 0. Unfortunately, there is no
choice of t). (0) which will allow A(s, t) to behave like
(s—4m')')' near threshold, even in the physical region.
This is a serious flaw of the model (2.1).
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and
P(s) = f(s)L-,'(s —4m'))" (3.2)

» (s) = (s+4m')/(s —4m') . (3.3)

The Regge-pole properties are discussed by calculating
explicitly the Froissart-Gribov continuation of A('). We
begin in a region of s such that Ren(s) (0, then ana-
lytically continue the final answer. In this s region, A"
obeys the following dispersion relation:

A (.)— (s)
sin~n (s) (s' —»)

1 1
X +—~«s . (3.4)

s —s sos)
The Froissart-Gribov continuation is now easily found:

a& (s)—=0 (3.5)

the term A", the terms A") and A'") being regarded as
part of the /-plane "background. "

The term A'&(s, t) can be written as

A" (s l) =&(s) (L~(s) —s)"+Ln(s)+s)"), (3 1)

where

In the general-mass case, when an amplitude similar
to (2.1) is written down and then partial-wave analyzed,
it is found that odd and even daughters of both signa-
tures occur. Here again, there is no contradiction with
the general Freedman-Wang results.

From Eqs. (3.6) and (3.8) it follows that the Regge
poles at l= n, n —1, , are the owly singularities of A('
in the finite l plane. In particular, A" exhibits no fixed
poles at the nonsense wrong-signature points, because
A(') itself has no third double-spectral function p'"."On
the other hand, it is expected that the term A&'&+A' &

will, upon being partial-wave-analyzed, exhibit such
fixed poles because this term does have a nonvanishing
p'"."However, because the Regge poles and the fixed
poles occur additively, the fixed poles are not rejected
in the Regge residues. Thus, the Regge dips associated
with the signature factor 1+e ' '& will be fully opera-
tive as l, —+~ with fixed s )see also Eq. (2 14)). This is
an explicit example of a recent general result of Oehme"
which shows that fixed poles do not necessitate the
existence of the Mandelstam-Wang' poles in the Regge
residues.

The Froissart, -Gribov continuation (3.6) also shows

explicitly that the Mandelstam symmetry"

a&+ (s) = —(2/vr) p (s) sinsn (s)I, (3.6)
a~+(s) =a

& q+(s), /=half-integer (3.9)

where

[s—»(s)) &'&Q, (s)«s.

is satisfied for A('). This means that A" "Reggeizes"

(3 7) by means of Mandelstam's version" of the Sommerfeld-
Watson transform, leading to an expression for A') of
the form

Here, a&+ and a& are, respectively, the positive- and
negative-signature partial-wave amplitudes, In Eq.
(3.7), Q~ is a I.egendre function of the second kind.

The integral (3.7) has been evaluated by Martin, "
who obtains

F (n+ 1)I' (—',l —-', n) I'(—', l+-', ——2'0')I=
2a+2F (l+ &)~l a—

XF (-', l ,', —,'l+ —' ——';—l+——'; 1/»'), (3.8)

where F ( ) denotes the hypergeometric function. The
result (3.6), together with (3.8), now holds for any I and
s. It is seen immediately that a&+(s) has simple l poles
at l=n, n —2, n —4, , from the factor I'(2l —2n), and
at l =n —1,n —3, n —5, , from the factor I'(-', l+ —,

' ——',~).
Since these poles all occur in the amplitude a&+(s), they
are all positive-signature Regge poles. In general Regge
theory, " the odd Freedman-Wang" daughters and the
even daughters have opposite signature. The reason that
there is no contradiction with the above results is that
we are dealing with the equal-mass case, for which the
odd daughters are unnecessary. The amplitude (3.1)
exhibits more daughters than is required by the general
theory, but the general theory is not actually coeA adicted.

"A. W. Martin, Phys. Rev. 173, 1439 (1968).
'4D. Z. I'reedrnan and J. M. Wang, Phys. Rev. 153, 1569

(1967),

A~'& = Q e„(s)L1+(—1)"e '~~&'&)Q &» „(s). (3.10)
n=o

(—1)"+' sin7rn F (2 —e)I"(m+1)
~..()= A'"

7r2~ e!F (e,„+-,')

1
X —

) ~
—e; ng~ —,') —,3.11

with similar results for the odd residues P&„+&. The
hypergeometric function in Eq. (3.11) is just a poly-
nomial of degree e in (1/&P). The leading residue is

y(s) sin~n(s) F(-,')
F(~(s)+2)

(3 12)

"C.E. Jones and V. L. Teplitz, Phys. Rev. 159, 1271 (1967).
"R.Qehme, Phys. Letters 28B, 122 (1968)."S. Mandelstam and L. L. Wang, Phys. Rev. 160, 1490 (1967).' S. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1962).
19 Q. N. Khuri, Phys. Rev. 176, 2026 (1968).

This is also apparent from the recent work of Khuri)"
because the functional form of Eq. (3.1) is essentially
the same as that of the Khuri model.

The Regge residues P„(s) of the Regge poles at
l=n„(s) =n(s) —n are easily found:
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It follows from (3.12) and (3.2) that the function

yo(s) =po(s)/(s —4m')" (3.13)

is real-analytic, and finite at s=4m', as required by
general Regge theory. '0 Using (3.3), it is not difficult to
show that the same result holds also for the eth residue:

.()=~.()/( —4 ').-" (3 14)

is real-analytic, and finite at s=4m'. Furthermore, it
is apparent that the residues P„(s) contain the factors
1/I'(n +2) which are required'o by the Mandelstam
symmetry condition (3.9).

Equation (3.6) shows immediately that all the resi-
dues P„contain the factor sinirn(s). By itself, this would
tend to make all the residues vanish when Q. (s) passes
through integer values. In order to obtain true reso-
marrces on the Regge trajectories, the residues must be
finite at non-negative integer values of n. This requires
that p (s) contain explicit pole factors which cancel these
zeros. If such pole factors are simply deleted, it would
not be unnatural to have true Regge poles without
having any resonances. In such a case, the direct-
channel Regge terms would actually correspond to a
"nonresonating background. " This is a somewhat
peculiar situation, but it does not seem to be in contra-
diction with any general principles. In fact, in phenom-
enological applications of Regge theory, zeros are often
inserted by hand in residue functions at such values as
n=0 or 1 (in order to eliminate ghost states). The only
difference in the present case is that the residue would
vanish at all non-negative integer values of n, instead of
at just a few such values.

4. DUALITY AND DOUBLE COUNTING

In order to understand how double counting can be
eliminated in the model, it is convenient to review very
briefly the concept of duality. ' ' By duality, we mean
that the "nondiffractive part" of an amplitude can be
represented by means of resonances alone. ""This is
strong duality in the nomenclature of Ref. 5. If, in
addition, we adopt the viewpoint that resonances are
identified with loops in the Argand diagrams of partial-
wave amplitudes, " then the statement of duality be-
comes the following: Except for diffraction, an ampli-
tude can be represented completely by means of loops in
partial-wave amplitudes. In connection with this state-
ment, it must be understood that the owly partial-wave
loops required are those which correspond to the usual
resonances lying on the direct-channel Regge trajecto-
ries (including daughters).

"H. Harari, Phys. Rev. Letters 20, 1395 (1968).
2' F. N. Dikmen, Phys. Rev. Letters 22, 622 (1969).
2' C. Lovelace, in Proceedings of the International Conference on

Elementary Particles, Heidelberg, 1967, edited by H. Filthuth
(North-Holland Publishing Co., Amsterdam, 1968).

The generalized interference model commits double

counting because it gives rise to extra partial-wave loops
which are not accounted for by the direct-channel poles.
These are the famous S'chmid loops, arising from
crossed-channel poles. To eliminate double counting,
we must impose the condition that the two different sets
of loops coalesce, i.e., that the positions of the Schmid

loops and the s-channel loops coincide. This condition is

apparently quite well satisfied in reality, v" and it
seems to be satisfied also by theoretical models based on
finite-energy sum rules. ' It is, of course, a bootstrap

condition, because it is satisfied only for special values
of the trajectory intercepts (for a given slope). Once
this condition is satisfied, the double counting is
eliminated as in Ref. 11:The residue of the s pole is
determined by taking the difference between the "full"
resonance loop and the Schmid loop. Unfortunately, the
full resonance loop must be obtained somehow from
outside the model, so that a complete bootstrap calcula-
tion is not possible within the confines of the model
itself.

The procedure outlined above has the disadvantage
that the physical interpretation of the partial-wave
loops is completely lost. In fact, it actually misses the
point of the duality concept, which is that an amplitude
is describable completely in terms of the formation and
decay of unstable particles (resonances). The partial-
wave loops are supposed to be more than just loops;
they are supposed to reRect the formation of long-lived
virtual states. The residues of the poles are supposed to
describe the coupling of the external particles to the
virtual, unstable particles, and these same residues can
occur in many different physical processes (except for
Clebsch-Gordan coeflicients). None of these supposi-
tions holds for the generalized interference model. Here,
the loops do not completely reQect the formation of
unstable particles. The residues of the s poles would not
be the same as those determined from the isobar model
and hence would differ greatly in different processes. "
The residues might even be negative in some cases. The
conclusion to be drawn from these remarks is that the
generalized interference model is not well suited to the
incorporation of duality, because the double counting is
eliminated only at the expense of a complete loss of
physical interpretation.
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